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SUMMARY _~.

STOCHAST1C APPROXIMATION WITH CORRELATED DATA

New almost sure convergence results are developed for a special

form of the multidimensional Robbins-Monro (RM) stochastic approximation

procedure. The spe ;al form treated can be viewed as a stochastic

approximation to the solution w = wo€ RP of the linear equations Rw = P,
where R is a pxp positive definite symmetric matrix. This special

form commonly arises in adaptive signal processing appligations.

Essentially, previous convergence results for the RM procedure contair |

r a common "conditional expectation condition" which is extremely

: difficult (if not impossible) to satisfy when the '"training data" is
a correlated sequence. In contrast, the new convergence results

tions and covariance function decay rate

i incorporate moment condi
1

conditions. The ease with which these results can be applied in

many cases is illustrated.
%

e gy

!
3
1
|
B .. SRR AT 0 ’ ‘ 1



i T FT O g iy
. i e L

A

1. Introduction. Consider the set of linear equations Rw=P,

where R is a pxp symmetric positive definite matrix, and w and P are

-1
In case R and P are unknown, and the solution, w = w =R P,

px1 matrices.
o

is desired, many techniques are available for finding an estimate of
w . TIn many adaptive signal processing applications, a recursive,

computationally efficient procedure for estimating Wi is an important

issue. A suitable multidimensional version of the Robbins-Monro (RM)

stochastic approximation procedure (Robbins and Monro (1951)) for re-
] cursively estimating w_ is given by
1 ] = + - >

D wn+]. wn “n(Pn ann)’ w2 L

where {Pn} is a sequence of random variables, PneRp, {Fn} is a sequence

of random pxp matrices, {un} is a sequence of positive constants, and

w.eRP is arbitrary. It is assumed that P and Fn are functionally

independent of wl,wz,...,wn. 1t is somewhat helpful to consider A to

be the vector which minimizes £(w) = wRw - 2w’P, where ~ denotes matrix
transpose. Interpreting F_ and P as "instantaneous estimates" of R
and P, respectively, the relationship between (1) and (deterministic)

steepest descent procedures is obvious. Consequently, the family of

algorithms represented by (1) has an interpretation as a family of

"stochastic gradient-following" algorithms.

v eecray

Algorithm (1) provides a suitable framework for the analytical
treatment of many of the algorithms that have been proposed in the
engineering literature for adaptive signal processing applications
(e.g., see bSakrison (1966) or Farden (1975)). TFor such applications,

1 oy A s
any "conditional expectation assumption" is extremely difficult

(if not impossible) to establish. Such conditions are commonly required by
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existing convergence theorems treating the RM procedure. For example,
see Schmetterer (1961, 1969), Sakrison (1966), or Farden (1975)

for a discussion of existing results. The practical application of
existing convergence results for the RM procedure to (1) esse tially
requires that {Pn - an} is an uncorrelated sequence for all fixed
parameter weRP.  The special form of the RM procedure represented by
(1) enables us to obtain convergence results which make use of no

such conditional expectation requirements and have a decidedly differ-
ent flavor than existing results for the RM procedure.

The contents and organization of this paper are as follows.
Notation and basic assumptions are presented in Section 2. The
framework presented in Assumption (2.1) establishes that the sequences

.r} and {Pn} are such that the ''time averages'' of E(Fn) and E(Pn)’
respectively, are equ-! to R and P. The generalization resulting from

these definitions is applicable to cases where E(Fn) and E(Pn) are periodic,

such as occurs in some adaptive digital communication applications.

In Section 3, it is shown that Assumptions (2.1) through (2.7) are
sufficient for the a.s. convergence of Wn to W The proofs of

Lemma (3.1) and Theorem (3.2) helow are quite similar in spirit to

the proofs of Theorem (6.1) and Theorem (6.3) of Albert and Gardner
(1967), respectively. However, the seemingly less restrictive assumptions
made in the present work, the simplification in proof resulting for
symmetric B and the basic differences in the form of algorithms

treated here are offered as justification for including the results

of Section 3 in this paper. Furthermore, in contrast with the

=

=




assumptions made by Albert and Gardner (1967), the form of Assumptions
(2.3) - (2.7) permits us to exploit the Borel-Cantelli Lemma and

the results of Serfling (1970) to prove Corollary (4.5). Corollary

(4.5) provides easily verified sufficient conditions for Assumptions

(23)-(2.7), and hence, for the a.s. convergence of wn to W Several

special cases of (1) are considered in Section 5 to illustrate the

D ——— ¥

application of these results. In case Fn and Pn are strongly con-

alELL

sistent estimates of R and P, respectively, the much simpler convergence

result of Section 6 is applicable.
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2. Notation and basic assumptions. The norm of a pxp matrix

A, denoted by ||A||, is defined here by ||A|| = sup lAx|, xeRP | where
Xi=1
RP denotes p-dimensional Euclidean space and le, xcRP denotes the usual

p-dimensional Fuclidean norm. For A real and symmetric, IIAII = max{lki(A)|L

i
where {Ai(A)}§=l are the p eigenvalues of A. The minimum and maximum
eigenvalues of a pxp matrix A are denoted by Amin(A) and Amax(A), respectively.
The element of a pxp matrix A occurring in the ith row and jth column of

A is denoted by (A)i i Similarly, the ith element of xeRP is denoted by

p
(x)i. The trace of a pxp matrix A is denoted by tr(A) = §=1(A)i i The
b

symbol 0 is used to denote the additive identity for Rl,Rp,or to denote
a pxp matrix of zeros. Square brackets [ ] are used to denote integer

part. Finally, subscripted variables like Vs Ty Qi, etc. are sometimes

denoted by v(k), n(2), 2(i), etc.

All random variables are assumed to be defined on a probability
space (Q, F, P). All relationships between random variables are

to be interpreted to hold with probability one.

It is worth emphasizing that Corollary (4.5) below establishes

sufficient conditions for Assumptions (2.3)-(2.7).

o]

(2.1) ASSUMPTION. The sequence {Wn} 1
n:

Wnst,satisfies the

recursion

1 W = =
(1) n+l wn i un(Pn ann)’ e, B

where {Pn} is a sequence of random variables, P eRp, {F } is a
n n
sequence of real symmetric nonnegative definite (pxp) random matrices,

{un} is a sequence of positive real numbers, and chRp is arbitrary.
Define w = K 'P, where R = 1im =~ [rl E (B e i g
0 ’ Ul Tl b S B
It is assumed that E(FQ), E(PQ) exist,that the above limits exist,
n+a
and that R is positive definite. Further, it is assumed that n % E(F
i=a+1l
converges uniformly to R as n»» for all non-negative integers a.

)
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Defining Vn = Wn Al and Cn = Pn - ano, we have

= B +
(2) vn+l (1 unPn)Vn unCn

For a sequence {Ai} of pxp matrices, define

k.
)
(B T LA X A A Ai' e
i I, if k < 1.

m

Defining Qi,m = U 9(1 - u F My E_ k+l,nukck’
J=

and iterating (2), one obtains @

= %l s |
(4) vn+l Ql,nVl An :

(2.2) ASSUMPFTION. The sequence {un}: is a nonincreasing sequence

_l 1
of positive constants u, = Otn ), 0 < liz il <
a3

(2.3) ASSUMPTION. Assumptions (2.1) and (2.2) hold and un||Fn||

a.s. 7
> 0 as n 2. i
atn g

(2.4) ASSUMPTION. Assumption (2.1) holds and n 5 Fki R
k'a+l

as n » @ for all positive integers a.

(2.5) ASSUMPTION. There exists a sequence of random integers

{vk} with 1 = vy <V, < Vg <... such that, with A Vi and
o
- o L {y p. =
Jk {vk, vt s ' Vil 1} we have (i) Py t+[k ], for some
@, 0 <a<l, (11) BI AL (I F)2 6> 0, and (i) Bl (5 E)eem:

JEJk' JEJk

The quantities &, ¢, and Y are all random variables that are independent of k.
(2.6) ASSUMPTION. Assumptions (2.1) and (2.2) hold and there
exists a random variable seRP such that Sé 1. C.2%°g ag nre
‘ n E=l k'k ¢
(2.7) ASSUMPTION. Assumptions (2.1) and (2.6) hold and
F o a.s.
| n(S Sn_1)|+ 0 as now.

3. Almost sure convergence of Wn to LA
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(3.1) LEMMA. / wmptions (2.1)-(2.5) are satiefied, then

d. 3
szl’,n” 13 0.

PROQF. For any positive integer m, jet K = K(n) be such that

and hence ‘lQl,nil i—“Qv(K),nil'

nedy.  Then Q) 4 = Qu(K),n Ql w(”)-1°
\\Ql v(K)—l“' Defining F v(k) STl Pk may be expressed as
= - i, & ¥ L=1) T T M ey E
k ; 5= .- "o M) Te(e-itl),
JEJk q=2 Lk,q i=1
where Lk,q = {Li{JK : Ql > 22 Sk 4 o 2q,i=l,2,..,q},
: P
so that (for Lv(k 41)=1 ké 1)
p,+1
p o =0 E
S+ o
T vy ey -1 k6+qz My k) kY) =14 q1)-LTk0 L- o

where a, = uv(k)pky and the last equality holds provided that o, # 1.

) imply that there exists ¢ random positive

Assumptions (2.2) and (2.5

; i
integer ko such that a, ﬁ_i-and \\Fkl\ f_l--Bk for all k Z_kO, where

geda !
B = uv(k+1)~f)k6' gimilarly, for all K > K_ and neJy, i‘Qv(K),n‘ii?/z'
1t follows that there exists a random variable M such that for all szc,
S 3 1, K
llo, |l <24 (1-B)<y M expl= 30 SRR B
i,n 2 K=k k-2 2 k=k0 v(k+1)-1"k

o)

1t is easily shown that Assumptions

g =%
since 1-x < e = for all real X.

(2.2) and (2.5) imply that the above summation diverges to « as K » e,

a. n

S,
3" 0as n > ®.

Consequently, “Ql,ui‘
(3.2) THEOREM. If fusumptions (2.1)-(2.7) are satiefied, then

i
il lvw\uéﬁ' 0 aé w* s

PROOF. From (2.1.4) and Lemma (3.1), it remains only to show that
! \A \a S+ ) as n > ». From Assumptions (2.1) and (2.6), with Sg = 0 and

Qn+l,n = I, we have

.

1

e Vil
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n
= = C +
(1) An E (Qk,n Qk+l,n) gk—l Sn
k=1
n
= r g +
P Qo M1 5
k=1
Defining .
By n ™ T Qi Mk (-5, _1)»
k=%
and
n
D = L Q u, F. S,
n k=1 k+l,n "k k

: = -D +S_.
(1) may be expressed as An B1 Dn Sn

1

From Lemma 1 of Albert and Gardnmer (1967, p. 189), Dn = (I-Q1 n)S, S0
9’

a.s a.s5.
_ B . .S. I
that A + (s -8) +Qq  §. Since s "> s and ||Ql’nll 5

Bl,n
as n »~ ®» (Assumption (2.6) and Lemma (3.1), it remains to show that
‘Bl,nl By5% 0 88w e,

Using the same notation as in the proof of Lemma (3.1), lBl nl
9

may be bounded as

K-1 K-l
B, 1 <1la [].]z = T, I Q u.F.(8-5, )|
= K = =
1,n vE)L,n ' e imkdl Tied JHL,v(k+l) =1 "33 j-1
o k
K-1 k{lkil
+ e |« a-s)] 2 m I, I Q u.F,(5-S, |
K = =
v(K),n ok ¥ s el jed, 34+1,v(k+1)-1"3 3 j=1
n
+] T Qpp, nHiFi 8851 |-
k=v (K} p
% q
Note that for all j,me Jk and k > k_ we have |le,m|| P qu(“v(k)ka) iﬂ%°
Consequeutly, defining dk = max |Fj(S-Sj_1)l, there exists a random
jedJ
k

variable Ml such that




= a1 g A L TN P Y T M e Ty wAs - aor 1
e 8
9 K-1 K-1
B, | < 3 T (1-8,) P, ¥ N ‘
A T I R ,
K-1
3 3
+=M o (1-8,) + 3 d
a My B (=B 45 P9k
i=k
0
n .
Defining a_ , = 7 (1-82)81, it remains only to show that

M =it

K-1
-1 a.s. .
) as K ~» =, C(Clearly, for all fixed
- A1t P Moo % B e
o
i>k, a . 3% Has n » ». From Lemma 1 of Albert and Gardner
- o n,i
n n
(1967, p. 189), = la_ .| =1- v (1-8,), which converges a.s. to 1l
3 ; n,1i i
1=k0 i=k0

as n - ». Consequently, by the Toeplitz Lemma (e.g., see Knopp

K-l ]
-1 -1
194 . 75)), li 2 d = 1i d &
(1947, p. 7500, fdm T 2k ao WPk T 0 M0 Ptk
o
u
-1 2 k ,
By Assumptions (2.2) and (25 )5 uv(k)pksk = E'Hzi_lﬂ——— is bounded; h
v(k+1)-1
hence, |B In$s. 0 as n » =, O

l,n

(3.3) COROLLARY. If {uk} satisfies Asswnption (2.2) and IIFkII
18 a.s. uniformly bounded (in k), then Assumptions (2.3) and (2.7)
may be deleted and Theorem (3.2) remains true.

PROOF., It suffices to consider uk =k 7. Since

IFn(S-Sn_l)lfJIFnII-IS—Sn_ll, Assumption (2.6) implies Assumption (2.7).
The Borel-Cantelli Lemma and the Chebychev inequality can easily be
applied to show that Assumption (2.3) is satisfied. 5

4. Sufficient conditions for Assumptions (2.3) - (2.7). Several

auxitiary lemmas witl be needed before the main result of this section,
Corollary (4.5) may be stated and proved. The following lemma is a

reasonably straightforward extension of Theorem A presented by




Serfling (1970). Consequently, the proof will be omitted.

(4.1) LEMMA. Let {xi} be a sequence of random variables, xieRp,

having finite "variances" oi2 = Bl(x,~E(x,))" (x; - E(z;))]. For integer

atn
3 . = (x s S = £ =
n > 1 define Xa,n ( 1 ’xa+n)’ o~ %: e 1755 and Mﬁ,n max
P L . Forn <-1 defi = e S =
él ag it s | a,nl} i Sy e Xa,n (% 2" xa)’ a,n

z., and M =max {|S
'=atnt+] ~ 1’ d a,n {I Qs

denote the distribution function for -~ ,and let g (Fa n) be a functional
3 3

nl""’lsa,-ll}' For |n|>1 let ¥,

s
depending o~ Fa,n' Let a, be an arbitrary but fized integer and let

v > 2. Suppose g (Fa,k) +g (Fa+k,£) <g (Fa,k+£) for all a >a, and
12k ket L 6B & F & <k + &<k <-1such that E(ISa,nIv)j_g%V(Fa,n)
for alla>a aidn2 1ora, -asns-L Then E(Mz,n) 5_(Zogz2ln|)v

g%v(Fa,n) for all a > a, and n > 1or @ =& EMR i Sl

(4.2) LEMMA., Let o and p(ky %) = p(2,k) be real-valued

k0o Ye,k

functions defined for all non-negative integers k,%. For 1 <n <m

define
m m
e Yn,m kin lin ak,gp(k,z)
m-n  m-u 7
=2 uiz kin e o(kyktu) + kin . k o(k, k).

Suppose that lp (R, ktu) | = 0(u™") uniformly for all positive integers

k. Ifles = 1 and 0<v<l, then for large m-n,

ks &

(23 |v. | = 0(tmn)*7V).

n,m'

Finally, if U g = MpMgs My = O(k_l), and 0<v<1, then

~-v/ (v+d

O(n )

() IYn m

PR R PR
A .
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PROOF. Suppose that o =1 and Ip(k,k+u)| = O(U—V), O<v<l,

k,2

uniformly for all positive integers k. It suffices to consider

Ip(k,k+u)| = (|u|+ )_V in which case (from (1))
m-n -y m-n+1 )
|Yn mI < 2(m-ntl) I (utd 52(m~n+l)(l+f x dx).
3 u=0 1 ;
The result (2) follows easily by evaluating the above integral.

Suppose now that a g = O(k_l), and Ip(k,k+u)| = O(U_v),

= U
k, & k'g M

0<v<1, uniformly for all positive integers k. For this case, it

suffices to consider M = k_l and Ip(k,k+u)| = (|u|+l)~v. Then from (1)
m-n ., m-u _ - a0
|y I < 2 (u+l) v f X l(x+u) ldx + (n-1) L . m
n,m' —
u=1 n-1
in—-n
=1). -V -1 -1
=5 -+ - -
2 uil u " (ut+l) Bn,m,u + (n~-1) "~-m 7,

where Bn P ¢n ((m-u) (nt+u-1)) - 2n(m(n-1)). If 1

b b

| A

u< 2<n<m,

then Bn o u-i in(n+e-1) - r(n-1). If 1 <% <u<n < mn, then

b b

< g 2. If n <u< mn, then B < 2n(u).
n,myu — - - n,m,u —

Consequently, for all 1 < & < n-2 < m-n-2,

n-1

lv | <20 an (n+f11) T i
n,m n u=42+1
m-n
+2 = u_l_vln u + (n—l)_l—m_l.
u=n

Letting 2=n8, 1>B8>0, and using the fact that Zn (1+x)<x for all x>-1,

it follows that there exist constants C1s Cos and Cq such that
nZB—l (o n—Bv n—v/2.

IYn,ml d Cl 2 ys C3

Finally, if 8 = (v+2)", then v, | = 0n~v/V*2y a
9
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(4.3) LEMMA. Define

YF(i,j,l,m) =|$T£1 w’E(fi—E(Fibbw”(Fj-E(Fj))ww’(FQ-E(FQ))UW‘(Fm—E(Fm)))w,

where wsRP. Define Pk(a) = qa + [ka], where a 18 a positive integer,

0 < a <1, Define the sequence {vk(a)} by vl(a) =1, vk+1(a) = vk(a) + Pk(a),
k=1,2..., and define Jk(a) = hk(a),vk(a)+1,...,vk+1(a)—1}. I

Assumption (2.4) holds and

-4
P, (a) 3 YF (i,j,l:m) < @y,

KL, e ()

(1)

i ~1 8

k

or gsome a, (< a <1, and for some ositive integer a, then Assumption
] i 3

(2.5) is satisfied.

PROOF. Define G, (a) = -l o ¥ ol Boda) =5 o1a) & B,
L LT T k LI )
k k
Let ¢ be given such that 0 < € < A, (R). Since
min

Xmin(%éaﬂzﬁmin (Gk(a)—R) it Xmin(R) and Xmax U%éa»f}max(Géé)dﬂ + Xmax(R),

it is sufficient to show that there exists a random sequence {vk(E)}, £
an integer-valued random variable with £ a.s. finite such that
R) - G -R - R
O<xmin( ) €= xmin( k(g) S Amin(R)iAmax(Gk(g) B) Amax( )

+ e
<>‘max(R) v

for all k, or, equivalently, that
max |w‘(Gk(£)—R)w| <¢ for k = 1,2,.... Hence, it is also sufficent

lw| =1
to require the stronger condition that

maXIW‘(Gk(E)—Rk(E))WI + maXIW’(Rk(E)—R)WI <€
lw|=1 lw|=1

for all k . By Assumption (2.1), there exists a positive integer 9y

such that for all sequences {vk(a)} with a > q, we have
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max Iw’(Rk(a)—R)wl < ¢/2. 1t follows from Assumption (2.4) that for

le=l %
all a=1,2,..., there exists an a.s. tinite random variable En such that

* *
max maxlw‘(G (5 )-R (¢ ﬁ)w| < g [i2¢%
lﬁkf“ lwl=1 k" "n Rk n

*
Let £ be the smallest such £ so that £ > q..
0 n 0 gl

It follows that

p (Aniaigl) <p (Imax !w’(Gk(a)—Rk(a))wlzp/Z for some k, l<k<n)
; w|=1

™~ 3

<

P ( max Iw’(G (a)- (a))w|>e/2)
N K -

[acli=}

d (%Pk(a))_a E(mafIw’(Gk(a)—Rk(a))WlL)
k=1 w|=1

]

n
- &1 @ = Y (1,1, Lm).
£ k=1 i,3,med, (a)

By hypothesis the above series converges as n > %. Applying the

definition of pk(a), it follows that for all € > 0, there exists

a positive integer N(el) such that for all a iAN(el) we have

iiz P(Snzg3q1)<al. Consequently, & = sup En is a.s. finite and

Assumption (2.5) is satisfied. o
(4.4) LEMMA. If there exigts a real-valued function f(k,k+u) =

O(|ul_8),8>%3 wni formly for all positive integers k such that

(2, aum) |< D) FEm) + £33 (6,0 F(Gm)f (fom),

F

then Apsmmption (2.5) is satisfied.

PROOF .

1t suffices to consider FiEisa) ™= (|i—j]+lsﬁ,
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Define the ijth element of a matrix A to be f(i,j). Then

b b b b 4 9.2
) ) L g OfE,DDEFE,DEG,m)EQR,m) = tr(A)<(trA )= 4
i=a j=a &=a m=a

The iith element of A2 is given by
i-1 b 28

5 (iem) 2B+ 1 (meidd)” ¢ 7
m=a m=i+1

—_
>
~

il

cl(i-aﬂ)l”ze = cz(b—i+1)l'28,

{n

for 0<B<% and some positive constants 5 and Coe Consequently, for

some constant Cqs tr(Az) 5_03(b—a+l)2—28, and hence tr(AA) = 0((b-a)4—48).
P wP” g 2 4-48

From Lemma (4.2), ( £ ¥ £°(1,3))" = 0((b-a) ). Clearly, (4.3.1)
i=a j=a

o

be satisfied if L k
k=1

S k—Aa—AaB<w. It follows that Assumption (2.5)

is satisfied for 1>a>l/4p if e>%. 0

(4.5) COROLLARY. Suppose that Assumptionms (2.1), (2.%2), and
¥ o a ) £ = = {
(2.5) are saticfied. Define pF(k,Q) E(Fsz) E.Fk)E(FQ),
- . _ - _ & s |
pc(k,k) = E(CkCQ) E(Ck)E(Ck), and pFC(k,Q,n) E((Ck E(Ck))Fn(CQ—E(Cz)))’
where all expectations ave assumed to exist. Suppose that for some

v>0, u mazx {||pF(k,k+u)l|,|pc(k,k+u)|,|pFC(k,k+u,n)|} 18 uniformly

bounded for all non-negative integers k, u, and n. Further suppose that

o

g = L ukE(Ck) exists and that there exists a constant B > 1 such that
" k=n

o 8 8 e,

£ g |PE(||F ||P)<o. Then |V | » 0 as no=.
el M n

e ge—
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* atn
PROOF., First consider Assumption (2.4). Define S o)
Ly k=a+1

(FL—E(Fk))w, where weRP. Clearly, Assumption (2.4) is satisfied iff

n"lls |a_.>s.

. 0 for all positive integers a as n » », Define
dy

Ma,n = max {,Sa,ll""’ Sa,nl}' Let {nk} be an increasing sequence

of positive integers such that n > o.ag k + =, PFor all n, <n g0, %1;

K
=4, .l
,n,-<—nk | [+ B D ()1 e ) e

k+1
1) oYs S
a a,n(k)-1

To apply Lemma (4.1), define g(Fa n) as

b

2 atn atn e
2) gF, )= [w|]® £ 5 |lop(k,2)|= 0", 0<v<l,
3 k=a+l f=a+l

uniformly for all positive integers a, from Lemma (4.2). It is

casily seen that g(Fa n) satisfies the needed conditions of Lemma

b

: o IO = 2 -1
(4.1). Letting nk-k s Iy h(lsa,n(k)' ) is summable for all a>v .

The Chebychev inequality and Borel-Cantelli Lemma thus imply that

-1
M |Sa,n(k)-l

4.8,
-

0 as k > ©. Letting { = Wodh (1) <1, A(EDen (i),

(3 B = Oy (log, 2(n, m D),

from (2) and Lemma (4.1). Substituting n = ° into (3), the Borel-

k
Cantelli Lemma and the Chebychev inequality imply that n;lgka4s' 0

as k » o for o > v_l. Consequently, from (1), Assumption (2.4) is

satisfied.
a
Now consider Assumption (2.6). Define S = % p, (C. =-E(C ),
4a,m T 1 k' 'k k
M T Sl P | A : 3 | |
= max{|$ HELE |5 ty and g(F )= I ) o ek, ).
a,m a, a,-1 F : 2
a a.m g a,m g 1) Wil ok (©)

It is easily seen that g(Fa m) satisfies the needed conditions of
]

Lemma (4.1). Trom
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iy o
Lemma (4.2), E(]S ‘2) = 0(n v/(v+2)) for all a > n. With nk=k "

a,n-a-1
the Chebychev inequality and the Borel-Cantelli Lemma thus imply that

@)

58 (1) -1 80 (1) " izn b (Cy = E(C)))
k

838+ 0 as k » = for a>v_l(v+2).

a,s. .
Consequently, S—Sn(k)—l "' 0 as k > = For all n, <mn <y, 1,

(4) |s—sn_1|5|s—sn(k+l)_ll + &+ by,

= i f iti con-
where gk Mn(k+1)-1,n(k)—n(k+l) and bk is a sequence of positive co

stants converging to zero as k » ». From Lemmas (4.1) and (4.2),

(5) E(Ei) = O((log2 2(“k+1'“k))2“;v/(v+2))-

Substituting n, = k" into (5), the Chebychev inequality and the Borel-

k
Cantelli Lemma imply that &k 4580 as k » = for all a > v_l(v+2).

Consequently, Assumption (2.6) is satisfied.

Finally, consider Assumption (2.7). Define Zk,n = Fn(Ck—E(Ck)),
a a a
S = T uZ o , and g(F. )= I T ok, |pe.(k,2,atmHl) ],
aHm k k,atmt+l a,m KW LS el k" 2'"FC

Proceceding as above, E(|S |2) = O(n_v/(v+2)) for all a > n.
a,n-a-1
with n = k%, o > v E(v+2), we have

4
a.S.

- - = I v 4n :
Foao S Sam -1 Fam)Ba) = .5 M Pinm - ®
i=n,
as k»o, Since I |g !3E(|‘Fq||8)<m, the Markov inequality and the
hel B :

Borel-Cantelli Lemma imply that ann as -0, Consequently, for
all nkjpink+l—l,

17 5=8 DI gy 8780 gy -0 T+ B+ 00
where Ek = Mn(k+1)—l,n(k)—n(k+l) and Wk ay8. 0 as kid», Since Ek

satisifes (5), Eka$s'0 as k>, Consequently, Assumption (2.7) is

satisfied.
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Finally, 8>1 and W = O(n—l) easily provide that unlanlla4S 0 by the
Markov inequality and the Borel-Cantelli Lemma, and hence, Assumption
(2.3) is satisfied.

Consequently, from Theorem (8.2)s |ana$s. 0 as n=. [
(4.6) REMARK. An important ancillary result contained in
Corollary (&4.5) is that sufficient conditions for the strong consis-

tency of the usual sample covariance function are provided. For
example, let {xk}fw be a zorc mean wide-sense stationary real-valued
normal random process and define px(v) = E(xkxk+v)' Consider

Fk = bk(u) A B, 1t is easily shown that for this case, pF(k,k+v) =

[pi(v)+px(v+u)px(v—u)l. The proof of Corollary (4.5) shows that if
n
-V -1 a.s.
ox(u)—O(u ) for v>0, then n kil T px(v) as n + «°, A
similar result, presented as Theorem 8B of Parzen (1961), states that
n-|v]|

n—l z X, X ués.p (v) as n » « provided that there exist positive
k=1 e k+lVI n-1

constants ¢, ¢ such that n XO pi (u) _<__cn_q for all positive integers
n. The conditions of Parzen ?1961) are clearly satisfied by px(u) =
O(u_v) and v>0.

(4.7) REMARKS. Recall that sufficient conditions for Assumption
(2.5) have been presented as Lemmas (4.3) and (4.4). Lemma (4.4) 1is
useful for several specific choices of {Fn}, as shown below in Section
5. In case {\anll} is bounded, or if {Fn} and/or {PJ—are deterministic,
then the conditions of Corollary (4.5) are simplified, as shown below
in Corollaries (4.8)-(4.11).

(4.8) COROLLARY. Let Pps Prs and g, be as in Corollary (4.5).

Suppose that Assumptions (2.1), (2.2), and (2.5) are satisfied, and

shat I F”ll} is bounded. If there exists a v>0 such that u’ mazx

{l\pF(k,k+u)l\,\pc(k,k+u)l} is uniformly bounded for all non-negative
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o0

integers k and u, and there exists a B>0 such that I Ign|8<w, then

a n=1
an|a$°'0 as now,

PROOF. Simply apply Corollary (3.3) to Corollary (4.5). ]

(4.9) COROLLARY. Suppose that F 18 deterministic, and that

Assumptions (2.1) and (2.2) are satisfied. Define pP(k,2)=E(P£P2) -

E(Pé)E(Pﬁ), and g, = kzn
that uvlpp(k,k+u)| 18 uniformly bounded for all non-negative integers

uk(E(Pk)-kao). If there exists a v>0 such

k &nd ws aud if g, > 0 asn = then IVhlaés' 0as n~+ o,
PROOF. An obvious consequence of Corollary (4.5). O

(4.10) COROLLARY. Suppose that {Pn) i8 deterministic, and that

Assumptions (2.1), (2.2), and (2.5) are satisfied. Define pFF(k,l,n) =

2 - o0
E((Fk—E(Fk))Fn(FQ—E(FQ))), and s kzn
a v>0 such that v’ max {|Ipp(k,k+u)||,||pFF(k,k+u,n)||) ig uniformly

uk(Pk—E(Fk) w, ). If there exists

bounded for all non-negative integers k, u, and n, and there exists a

B>1 such that = |gﬂ|BE(||Fn||B)<w, then |Vh|a$s' 0 ag n.
n=1

PROOF. Follows directly from Corollary (4.5). O

(4.11) COROLLARY. Suppose that both {Fn} and {Pn} are deterministic,

and that Assumptions (2.1) and (2.2) are satisfied. i 0 My (P,-F.w )

exists, then IVhl >0 as n -+ o,

PROOF. Trivial case of Corollary (4.5). O

5. Application of Corollary 4.5.

(5.1) Special families of Fn and Pn. Let {Xj)fm be a sequence

of RP-valued zero-mean random variables and let {s.)o_o°° be a sequence

of real-valued zero-mean random variables. Define Rxx(k,ﬁ) = E(XkXE),
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Ps(k,l) = E(skxl) and ps(k,l) = E(Sksl)' Suppose that Rxx(k,k+u),

Pg(k,k+u), and ps(k,k+u) are periodic in k with period N. Define

N N
Eeiil B (k,k) and P = gdm % (k,k). It will become apparent
k=1 *¥ k=1 °

i in what follows that R and P satisfy Assumption (2.1).
Suppose that it is desired to choose weRp to minimize &E(w) =

N
% E((sk—w’Xk)z). Such problems arise frequently in adaptive

t;insversal filter channel equalization in digital communications.

( When N = 1, the problem reduces to the use of jointly wide-sense

i stationary sequences {sj} and {Xj}. Assuming that R is positive

definite, the desired solution, LA is given by A R—lP. Assume now

F that R and/or P are unknown, and that it is desired to use algorithm i

’ (2.1.1), with Fn and Pn functions of the observed time series, {Xj} and

{sj}, to recursively estimate W Obvious candidates for Fn and Pn

't are
i B
t (1) F = Kn z XN
F jen-k +1 7 J
| n
and
= 2
! (2) P =K I s.X

jen-K +1 3 J
n

< aa sy

where Kn is a positive integer; e.g. Kn =1, K, or n. In fact, algorithms
represented here by (2.1.1) with Fn and Pn given by (1) and (2) have
frequently appeared in the engineering literature for consideration in

a wide range of applications. 3

Note that if Kn = K (a constant), then E(Fn)’ E(Pn)’ and

| E(Cn) are all periodic (in n) with period N. Furthermore, for any ?
‘ n+N y
n>0, N IEC)=0. If, in addition {u} sarisfies either v =
k=n '
k -1 -1 ;
a([ﬁ] + b) or = a(k+b) ~, where a > 0 and b > 0, then it can be

Y

o

. ' 4
E. b s s e T T PNl ot T 0T (i et W e s - som ooy Sy sg T y o e o g e St e ..h
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. v - ¥ e = _l n 2
shown that l&nl |k£nuk h(Ck)| O(n 7). If, for example, E(||Fn|| )

is bounded (in n), then ; [gn|2E(||Fn||2) < o, thus satisfying the
conditions on {gu}statednli Corollaries (4.5) and (4.8)-(4.10). Of
course, many other choices of {uk} are permissible. Finally, if Ku = N,
then E(Ck) = 0, and the conditions on {gn} are a forttori satisfied.

The remaining conditions oa {Fn} and {Pn] stated in the preceding

corollaries are quite mild "asymptotic covariance decay rate' conditions.

The strongest of these decay rate conditions is that imposed on Yp via

Lemma (4.3) in order to satisfy Assumption (2,52

Regarding the covariance decay rate conditons in the corollaries of
Section 4, it may be helpful to note that

(3) oc(k,l) = op(k,l) + wooF(k,ﬁ)w0 - pPF(k,ﬁ) W o- pPF(ﬁ,k)wo 5

where py and p,, are defined in Corollaries (4.9) and (4.5), respectively,

P

and pPF(k,Q) = E(PQFQ) - E(PQ)E(FQ). Furthermore, p can be expressed as

FC

4) pFC(k,ﬁ,n) = oPFP(k,ﬁ,n) Lzl oFF(k,l,n)w0

(k,l,n)wo-p (stan)wos

“PpFF PFF
where PrF is defined in Corollary (4.10) and pPFP(k,Q,n) = E((PQ—E(PQ))'
F2(P,-E(P,))), and pppp(k,2,n) = EQ(PL-E(R)))Fa(F,=E(F,))). The results
(3) and (4) simply express the conditions on {Fn} and {Cn} stated in the
corollaries of Section 4 in terms of similar conditions on {Fn} and {Pn}.

In view of the widespread conslderation of algorithms fitting the
framework of (2.1.1), (1), and (2), it is of interest to reduce the moment
condtions on {Fn} and {Pn} stated in the corollaries of Section 4 to moment
conditions on {Xj} and {sj}. In case {Xj} and {sj} are normally distributed,

greatly simplified conditions can be established for this family of

algorithms, as shown in Section (5.2).

T e

e A

e
L
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(5.2) The normal case. Assume the same notation and structure as
in Section 5.1. Further, assume that all random variables involved are
jointly normally distributed. Then all of the ''covariance decay rate
conditons" for {Fn} and {Pn} stated in the corollaries of Section 4 and
Section 5.1 can be expressed in terms involving the covariance functions
of elements of {Xj; and {sj}. In order to accomplish this, some pro-

perties of joint moments of normally distributed random variables are

required.

Let Z1s ZyseesiZy be zero-mean jointly normally distributed with
E(Zizj) = 0(i,j). Using the properties of the characteristic function
of z)s Zos e eaZgy i: 1is straightforward to show that

4
(1) E(n & g(24=1; 2iD))

(24-1%21
=1

= i 80 OBl L 0(21,22)0(23,24)...0(27,28),

1 8

where the summation is over all possible ways of combining 21,22,...,28
E{ly25.c0s81), li#lj for i#j, into four distinct unordered pairs, no
pair of which is (1,2), (3,4), (5,6), or (7,8). There are sixty terms
in the sum.

With F given by (5.1.1) and Kn = K, and defining f(k,%2) = max
y 1<i,j<p

|(R (k,2)). ,|, (1) can be applied to show that the conditions of
XX i,]

Lemma (4.4) are satisfied if for some v > 1/4,

v
u  max PR (kyktu)) |, |
1<i,j<p e ot

is uniformly bounded for all non-negative integers k and u. Similarly,

if for some v]*O,



!

u b omax ([P (k,k+u))

o, Gk, k) [
1<f<p f

l)
RI

is uniformly hounded for all non-negative integers k and u, then the
decay rate conditions stated in Corollary (4.5) on Ppr Peo and Ppc are
all satisfied. Consequently, each member of the family of algorithms
represented by (2.1.1) with Fn and Pn given by (5.1.1) and (5.1.2),
and K= K converge a.s. to w_ provided that, in addition, {uk} and K

are chosen as discussed in Section 5.1.

For example, let {xk:kr{O,il,...}} be a real-valued zero-mean wide-sense station-
ary sutoregressive-moving average (ARMA) normal random process. With

Xk = (Xk’ SREREEY Xk—p+1)’ and i = Xt (integer a), the required

decay rates of (5.1.3) are easily established. Hence, each member of
the family of algorithms represented by (2.1.1) with Fn and Pn given

by (5.1.1) and (5.1.2), Kn = K, and {un} satisfying Assumption (2.2)

converge a.s. to W .

6. A simple almost sure convergence result.

(6.1) THEOREM. OSuppose that Assumption (2.1) holds and that there

. 0 o = . . Z
exist sequences {an}n=1 and {bn}n=1 of non-negative real numbers (possibly

random) satisfying |lEh-R|l§gn and %Z;wo-Pn‘fbn' Furthermore, suppose
that there exists a positive integer n, (possibly random) such that for

9 <]. o
all nzn , 0 <u, Amin(R) 1 Then for all nzﬁo{‘

n n
(1) Ivn+]|5JVn0|-gzno(l-ukdk) + max (by/dy) (l-yzno(l-ujdj)),

n <k<n
peac

el ks ]
&% 0 as | 3

n
where dk = Amin(R)-ak. Purthermore, 1f E=1ukdk§'s'm and bndn

nso, then |Vn|§'3-0 as nre. i
|
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PROOF. From Assumption (2.1),

=¥ - & V +F w -P_-RV
vn+l vn unRvn un(Fn B e n)’

so that for all n>n_,
- - . l -
& lvn+lli(l—unxmin(k))lvnl+un|an Rll IVn'+unlpnwo Pn

< (1-u d )Ivn|+unbn.
n

Iterating (2), for all “ZFO’

n n n -1

= = d d ;
() |Vn+1|i|Vnolﬂ=no(l ”kdk)+ﬁ=no§=k+1(l uedIud, (b, dy ™)
Since all'terms appearing in the sum in (3) are a.s. non-negative, ..)
follows immediately from (3) with the aid of Lemma 1 of Albert and
n
4l 2.8, ~la.s.

Gardner (1967, p. 189). Furthermore, if E=lukdk and bndn - "0 as
n>o, then (3) and the Toeplitz Lemma show that lvn|3'5‘0 as n e,

(6.2) Remark. Theorem (6.1) is applicable to the case discussed

in Section 5 with Kk= ke,

o

P T, SR we g e PEEEENETS e.
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